Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

For problems 1 and 2, determine if the following sequences coverge or diverge. If it converges find its limit.

1. $a_{n}=\ln (n+1)-\ln n$
2. $a_{n}=\frac{(2 n)!}{(3 n)!}$

For problems 3 and 4, find the sum of the following convergent series:
3. $\sum_{n=1}^{\infty} \frac{2^{n}+e^{n}}{\pi^{n}}$
4. $\sum_{n=1}^{\infty}\left(e^{\frac{1}{n}}-e^{\frac{1}{n+1}}\right)$

For problems 5-10, determine if the following series converge or diverge.
5. $\sum_{n=1}^{\infty} n e^{-n}$
6. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
7. $\sum_{n=1}^{\infty} \frac{n \sin ^{2} n}{1+n^{3}}$
8. $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$
9. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{2 n+3}$
10. $\sum_{n=1}^{\infty}(-1)^{n-1} \tan ^{-1}(n)$

For problems 11 and 12, determine if the following series converge absolutely, conditionally or diverges.
11. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
12. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}$
13. If the $n^{\text {th }}$ partial sum of the series $\sum_{n=1}^{\infty} a_{n}$ is

$$
s_{n}=3-n 2^{-n}
$$

find a_{n} and compute the sum $\sum_{n=1}^{\infty} a_{n}$

